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Nowadays, multi-dimensional data (tensor data) have shown their capability of preserving
multilinear structures. Due to the measuring error or other non-human factors, these data
often suffer signal corruptions or missing values, or even both. To address these issues
simultaneously, this paper studies the Robust Tensor Completion (RTC) problem, a mixed
problem of the known Low-Rank Tensor Completion (LRTC) and Robust Principal
Component Analysis (RPCA). Based on Tensor-Train rank (TT rank), the proposed model
is able to capture the latent structure information of tensor data by recovering the low-
rank component and separating the sparse component from the partial observations. To
make TT rank more effective, an auto-weighted mechanism is utilized to balance the
importance of different matricizations from the same tensor. We also propose a more flex-
ible tensor augmentation approach called Tree Ket Augmentation (Tree-KA) to obtain a
higher-order tensor from a lower one with it a new general explanation. Alternating direc-
tion method of multipliers (ADMM) is employed to solve the resulting model and extensive
numerical experiments have verified the effectiveness of the proposed model compared
with other state-of-the-art methods.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Tensors, also known as multi-arrays, have received much attention in a great number of fields in a recent decade, such as
computer vision [1–3], machine learning [4,5], data mining [6], and hyperspectral image processing [7,8]. The tensor datas
are prone to missing values and sparse noise when acquiring and processing them. While the low-rank property of tensor
makes it possible to reconstruct the low-rank component from the damaged data. Two major previous works, Robust Prin-
cipal Component Analysis (RPCA) [9] and Low-Rank Tensor Completion (LRTC) [2], can only address the outlier problem and
the missing value problem alone, respectively. Thus, in this paper, we mainly focus on the Robust Tensor Completion (RTC)
problem [10,11], which aims to decompose a given tensor with partial observations into a low rank tensor and a sparse
tensor [12].
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As it’s well known that multi-channel data prevails in the real world and the two-dimensional array is difficult to meet
the structural requirements of storing higher-dimensional data. For example, the color image not only has the height and
width of the plane but also has three channels of Red, Green, and Blue (RGB) in depth, while hyperspectral images own more
channels. Apparently, if a one-dimensional or two-dimensional array is used for data storage at this time, the structured
information of the original data may be lost. Besides, the common tensors are nevertheless of low-rank, and tensor decom-
position is usually the core of high-dimensional data processing. In this way, they can be effectively transformed into much
smaller subspaces through powerful decompositions such as the CANDECOMP/PARAFAC (CP) [13], Tucker [14] and Tensor-
Train (TT) [15]. And these decompositions are usually used to analyze multi-linear datas to obtain a higher-precision result.

Among the images or video data which lies in high dimensional spaces, the characteristics of low-rank structure play an
essential role. The low-rank component shows a high correlation in various parts of a picture or frames of a video, which
offers potential inherent information of structure. The principal component analysis (PCA) for dimensionality reduction is
the most popular data analysis tool to perform low-rank approximation on the input matrix or tensor. Because its implemen-
tation can be achieved by eigenvalue decomposition, it is especially sensitive to outliers.

To overcome this drawback, the matrix-based RPCA [9] is introduced to eliminate sparse noise in the input matrix in
order to obtain a low-rank approximation. The known observations are not accurate and randomly contain variance in dif-
ferent strengths. Hence, to recover potential low-rank and sparse noise components from the partially corrupted entities is
knotty. Suppose we have an observation matrix Y ¼ X þ N, where X 2 Rn1�n2 represents the low-rank component and
N 2 Rn1�n2 represents the sparse noise component. Then the RPCA problem can be written as follow [16]:
min
X;N

rank Xð Þ þ kjjNjj1 s:t: Y ¼ X þ N; ð1Þ
where jjNjj1 denotes the ‘1-norm (sum of the absolute values of all the entries in N). k is the regularization coefficient. More-
over, the larger k is, the greater the sparsity of N is (there are more zero elements). It’s a convex optimization problem with
equality constraints inherently. In this way, RPCA is able to address the sparse noise problem with the observations, whose
structure is the sum of low-rank and sparse components. In tensor case, the given observed tensor Y 2 Rn1�n2�n3 can be also
decomposed as Y ¼ X þN , and the RPCA model becomes tensor RPCA (TRPCA):
min
X ;N

rank Xð Þ þ kjjN jj1 s:t: Y ¼ X þN ð2Þ
To overcome the missing value estimation problem, i.e., obtaining a completed object from its partial components, a lot of
attempts have been made [17–19]. The core of these problems is to find the relationship between missing entries and
retained entries, deriving many low-rank matrix completion (LRMC)[20] methods. They aim to recover missing values from
partially observed entries. Given an observation subset X, then recovering the missing entries from the known is a well-
known low-rank matrix optimization problem:
min
X

rank Xð Þ s:t: PX Xð Þ ¼ PX Tð Þ ð3Þ
where T is the original data and PX �ð Þ is the projection operator (see definition in Section 3). Similarly, the tensor-based com-
pletion problem, i.e. LRTC, to recover a multi-dimensional data X 2 Rn1�n2�n3 is:
min
X

rank Xð Þ s:t: PX Xð Þ ¼ PX Tð Þ ð4Þ
In fact, the situation may go more complicated, i.e., the given entries are not only partial but also inaccurate. Neither of the
models above can solve this alone. For TRPCA methods, once they cannot get completed objects, the missing entries may be
regarded as outliers. As a result, the missing entries of the low-rank component can be recovered by mean or other values.
For LRTCmethods, once their partially known entries are not all accurate, the noisy ones can never be modified, which causes
the reduction of recovering performance. Therefore, it’s worthwhile to solve these two problem at the same time to construct
a RTC model, i.e.,
min
X ;N

rank Xð Þ þ kkNk1
s:t: PX Yð Þ ¼ PX X þNð Þ:

ð5Þ
In this way, the mixture model can address the observations with partial noise problem based on TT rank.
The paper’s specific contributions are as follows:

1. We proposed a new mixture Robust Tensor Completion model based on TT rank to recover missing entries from partially
known corrupted entries. We used Block Coordinate Descent (BCD) [21] and the Alternating Direction Method of Multi-
pliers (ADMM) [22] to optimize the proposed model.

2. The TT rank of different modes varies from each other and the global information contained is various accordingly. Thus,
we adopted an auto-weighted mechanism to measure the importance of TT ranks.

3. We also proposed a more flexible Ket Augmentation (KA) [23] named Tree-KA by using the tree structure, which can bet-
ter fit various sizes of tensors. As a result, the Tree-KA scheme can also represent a low-order tensor by different higher-
order tensors without changing the total number of the entries.
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The rest of this paper is organized as follows. In Section 2, we illustrate some relevant works. In Section 3, we define the
notations about tensor and some definitions in detail. In Section 4, we propose our model RTC-TT along with it’s optimization
process. In Section 5, experimental results are reported and analyzed. The last Section 6 concludes and plan for future work.

2. Related work

Since the minimization of the rank of the tensor in Eq. (2) is NP-hard [24], the proved best convex approximation, the
tensor nuclear norm, could be a surrogate for the function rank �ð Þ[25], which leads the following optimization problem [16]:
min
X ;N

jjXjj� þ kjjN jj1 s:t: Y ¼ X þN ð6Þ
where jjXjj� denotes the tensor nuclear norm (see definition in Section 3). This is the well-known robust principal compo-
nent analysis problem, which was originally proposed in [9] based on matrix. While Lu et al. [16] leveraged the emerging
numerical algebra of tensors, e.g. t-product [26], to extend it to the tesnor case as in Eq. (6). And actually t-product is a
convolution-like operation, which can be implemented by using Discrete Fourier Transform (DFT). Thus, he further proposed
a more general TRPCA model in [27]. The best transform is different for different tasks, which leads to different difinitions of
tensor rank and tensor nuclear norm according to the invertible linear transforms used.

Low-rank tensor completion based on Sum of Nuclear Norm (SNN) was first proposed in [2], while it is mainly based on
Tucker rank [14]. Goldfarb et al. [28] proposed to use the SNN for robust tensor completion, which is given as follows:
min
X ;N

XN
i¼1

kX ið Þk� þ kkNk1

s:t: PX Yð Þ ¼ PX X þNð Þ:
ð7Þ
However, the SNN is just suboptimal to approximate the Tucker rank minimization [19]. Moreover, the Tucker rank was
proved not so good as TT rank on capturing global correlations in [17]. TT rank originally came from Tensor-Train decom-
position, which was proposed by Oseledets [15] in 2011. Based on tensor tubal rank, Lu proposed to use the tensor nuclear
norm in [29] for third-order tensors. Nevertheless, the tensor nuclear norm method is just suitable for third-order tensors,
while many real-world datasets are higher-order tensors, such as color video. On the other hand, Xu et al. [30] proposed an
unfolding method along each mode based on matrix factorization for noisy low-rank tensor completion, while it also owns
the shortcomings of the SNN method since it utilizes the Tucker rank minimization of a tensor.

3. Notations and preliminaries

In this section, the representations notations and preliminaries are described in detail.

3.1. Notations

Throughout this paper, we denote an n-mode tensor by calligraphic letters, e.g., X 2 RI1�I2�����In , where Ik; k ¼ 1;2; � � � ;n is
the dimension of mode k. And matrices are denoted by the upper case latters, e.g., X. Especially, the element i1; i2; � � � ; inð Þ of
tensor X 2 RI1�I2�����In is denoted by xi1 i2 ���in .Vectors are denoted by boldface lowercase letters, e.g. x and scalars by lowercase
letters, e.g. x.

Some mathematical operations of matrix and tensor are used. The inner product of X 2 Rn�m and Y 2 Rn�m is defined as

X;Yh i ¼ tr XTY
� �

, where XT is the transpose of matrix X and trðÞ is matrix trace. The ‘1-norm is defined as

jjXjj1 ¼
P

i1 i2 ���in jxi1 i2 ���in j, the Frobenius norm as jjXjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i1 i2 ���in x
2
i1 i2 ���in

q
and the nuclear norm of matrix as jjXjj� ¼

P
iri Xð Þ,

where ri Xð Þ is the i-th singular value of matrix X. fold �ð Þ is the operation to convert a lot of matrices into a tensor and it

is opposite to unfold �ð Þ. For a vector x, the l2-norm is jjxjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

ix
2
i

q
.

3.2. Preliminaries

Definition 1 (Projection Operator PX �ð Þ). [31] Suppose given an index set X, the projection operator PX Tð Þ is defined as the
tensor that exacts the entries from T 2 Ri1�i2�����in in set X;n ¼ 1;2;3; � � �. And the other were set to zeros, i.e.,
PX Tð Þi1 i2 ���iN ¼
T i1 i2 ���iN ; i1i2 � � � iN 2 X;

0; i1i2 � � � iN R X:

�

Definition 2 (Tensor-Train Rank). [15] A tensor-train rank is generated by tensor-train decomposition of tensor
X 2 Rd1�d2�����dN , which owns a succinct format:
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r ¼ r1; r2; � � � ; rNð Þ;
where rk ¼ rank X k½ �
� �

and X k½ � 2 Rm�n (m ¼
Qk

i¼1di;n ¼
QN

s¼kþ1ds), k ¼ 1;2; � � � ;N.
Definition 3 (Tensor Nuclear Norm). [32] The tensor nuclear norm of X 2 Rn1�n2�n3 ; jjXjj�, is defined as the sum of the singu-
lar values of all the frontal slices of X̂ , where X̂ is obtained by performing the fast Fourier transformation (FFT) along the tube
fibers of X . Indeed,
jjXjj� ¼
Xn3
i¼1

jjbX ið Þjj�;
where bX ið Þ denotes the i-th frontal slice of X̂ .
Definition 4 (Tensor-Train (TT) Nuclear Norm). [17] The tensor trace norm of tensor X 2 RI1�I2�����In , denoted by jjXjj�, is
defined as a convex combination of the tensor-train nuclear norms of different matrices flattened along each mode, that
is, jjXjj� ¼

Pn
k¼1akjjX k½ �jj�, where ak is the weight of the k-th norm and

Pn
k¼1ak ¼ 1;ak > 0.
4. The proposed algorithm

4.1. Robust tensor completion based on tensor-train rank (RTC-TT)

The main problem of tensor model is the definition of tensor rank due to the exist of a common dilemma. Unlike the sev-
eral ‘‘good” properties of matrix rank, the properties of tensor rank are difficultly satisfied. Moreover, the definition of
nuclear norm and the convex envelope of the chosen rank are also ambiguous. The several popular definitions of tensor rank
are CP rank, Tucker rank, tubal rank [33] and tensor-train rank (TT rank). Compared with the others, the TT-rank can capture
the global correlation of a tensor as it provides a correlation between a few modes and the rest [17]. For example, suppose
there is a tensor with all the same dimension d1 ¼ d2 ¼ d3 ¼ � � � ¼ dn ¼ dð Þ, then matrix X k½ � has a dimension ofQk

i¼1di �
Qn

s¼kþ1ds. It’s a relatively balanced metricizing scheme against Tucker rank with a dimension of d� dn�1.
Thus, we aim to study the Tensor-Train rank optimization problem in this paper, and Eq. (6) turns to the TT Nuclear Norm

[17] form as:
min
X k½ �

XN�1

k¼1

akjjX k½ �jj� þ kjjN jj1 s:t: Y ¼ X þN ð8Þ
where ak denotes the weight of X k½ �, matirx flattened along the k-th mode. Similarly, the low-rank tensor completion (LRTC)
problem (4) solved by TT rank optimization becomes:
min
X k½ �

XN�1

k¼1

akjjX k½ �jj� s:t: PX Xð Þ ¼ PX Tð Þ ð9Þ
As mentioned in Section 1, neither RPCA nor LRTC can solve the situation with both missing entries and sparse noise, i.e., in
addition to being grossly corrupted, the observed entities are only partial. Thus the tensor case of the exact recovery of low-
rank component is considered as a combination of Eq. (8) and (9), whose model (RTC-TT) can be obtained as follow:
min
X k½ � ;N

XN�1

k¼1

akjjX k½ �jj� þ kjjN jj1

s:t: PX Yð Þ ¼ PX Zð Þ; Z ¼ X þN ; aT1 ¼ 1; a P 0;

ð10Þ
where X is the set of partial observations with unknown noise, Y is the corrupted object without missing entries and Z is the
recovering object. The ‘1-norm is utilized to separate the sparse component from observations, as suggested in some former
works [9,16].
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4.2. Auto-weighted mechanism

The importance of TT rank of different modes varies and the nuclear norm can be a surrogate for the rank approximately,
which inspires us to use different weights to measure their improtance. However, how to select ak remains pendent.

In this paper, we introduce an auto-weighted mechanism [34] to adapt the TT ranks of different modes. Due to the par-
ticularity of matrix rank, the larger rank contains more information, which should deserve larger weight. We construct a
maximizing objective function to generate adaptive weights with the variation of matrix rank based on Eq. (10) ‘2-norm
term is added:
max
a

PN�1

k¼1
akjjX k½ �jj� � cjjajj22

s:t: aT1 ¼ 1; a P 0;
ð11Þ
where c; k > 0. The first term of Eq. (11) comes from Eq. (10) by concluding the information relevant to weights a. The larger
the nuclear norm of flattened matrix X k½ � is, the larger weight is forced to maintain more information of underlying tensor
data. And the new term in Eq. (11) is a penalty term as well as used to smoothen the weight distribution. In other word, this
term can avoid the occurrence of the situation like this, the most important mode will get a weight of 1 while the others of 0s
when c ! 0. On the contrary, when c! 1, each weight will be equal. Without loss of generality, a minus sign is exploited
here to simplify the solving process in the meanwhile to avoid trivial solutions.
4.3. Optimization

Given that proper correlations c and k, a set of partially observed corrupted entries X, and in which there exists a struc-
ture like Y ¼ X þN , where X is low-rank and N is sparse, we can optimize the problem (11) by two steps. The outer frame-
work of optimization is BCD and the inner framework is ADMM.
4.3.1. Outer optimization framework (BCD)
We divide the updating parameters into two blocks. The first block is a and the second block is the others (X and N ).
In the first block, we solve the objective function (11) by rewriting it as the minimization form initially:
min
a

�lTaþ cjjajj22
s:t: aT1 ¼ 1;a P 0;

ð12Þ
where vector l ¼ X 1½ �
�� ��

�; X 2½ �
�� ��

�; � � � ; X N½ �
�� ��

�

� �
. Obviously, it’s a convex Quadratic Programming (QP) with equality and

nonequality constraints, and it can be solved by any QP solvers. The Lagrangian function of Eq. (12) is
L ¼ �lTaþ cjjajj22 þ g aT1� 1
� �

� dTa; ð13Þ
where the Lagrangian multipliers are g P 0 and rP 0. By taking the derivatives of Eq. (13) to a and set it as 0, we have
ak ¼
dk � gþ lk

2c
; for k ¼ 1; . . . ;N: ð14Þ
At the optimal solution, the KKT complimentary conditions should be satisfied because the QP here owns a globally optimal
solution. First we consider the case of lk � g > 0. We can know that ak > 0 becasue of rk P 0. According to the KKT com-
plimentary conditions, rkak ¼ 0, so we have rk ¼ 0, that is, r ¼ 0. Then if lk � g < 0;rk > 0 satisfies the nonnegative con-
straint of ak. Again according to the KKT complimentary conditions, ak ¼ 0. Similarly, if lk � g ¼ 0, we have ak ¼ 0. As a
result,
ak ¼
lk�g
2c ; lk � g > 0;

0; lk � g 6 0;

(
ð15Þ
where
g ¼
PN

k¼1lk � 2c
n

; ð16Þ
because of the constraint condition aT1 ¼ 1, and n denotes the number of nonvanishing elements in vector a.

Due to the connection between X k½ �
	 
N�1

k¼1 , a split varible is needed extral to solve the problem, leading to exploit ADMM to
optimize our inner framework.
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4.3.2. Inner optimization framework (ADMM)

In this part, we introduce matrices Mk to disentangle the relationship between X k½ �
	 
N�1

k¼1 , thus the objective function with
a new constrained condition Mk ¼ X k½ � is rewritten as follow:
min
X k½ � ;N

PN�1

k¼1
akjjMkjj� þ kjjN jj1

s:t: PX Yð Þ ¼ PX Zð Þ;Z ¼ X þN ;Mk ¼ X k½ �;

ð17Þ
whose terms are only relevant to X and N . Then we can obtain the unconstrained augmented Lagrange function of Eq. (17):
L X ;N ;Z;Mk;D;Qkð Þ ¼
XN�1

k¼1

akjjMkjj� þ kjjN jj1 þ
q
2
jjZ � X �N jj2F þ D; Z � X �Nð Þh i þ

XN�1

k¼1

bk

2
jjX k½ � �Mkjj2F

þ tr QT
k X k½ � �Mk
� �� �

; ð18Þ
where q; bk are the penalty factors and D;Qk are the dual multipliers, and the updates of X ;N ;Z;Mk;D and Qk are given
respectively.

Hence, we can update X with fixed Mk;N and Z by taking the derivative of X in Eq. (18):
X tþ1 ¼ q
qþ �b

Zt �N t þ Dt

q

� �
þ

�b

qþ �b

PN�1
k¼1 bkfold Mt

k �
Qt

k
bk

� �
PN�1

k¼1 bk

; ð19Þ
where �b denotes the average value of bkf gN�1
k¼1 .

Similarly, updating N with fixed X ;Z is as follow:
N tþ1 ¼ argmin kjjN jj1 þ
q
2
jjZt � X tþ1 �N jj2F þ Dt; Zt � X tþ1 �N

� �
 �
¼ softthresholding Zt � X tþ1 þ Dt

q
;
k
q

� �
; ð20Þ
where the softthresholding algorithm can be found in [35].
Then, the update of Mk with fixed X is
Mtþ1
k ¼ arg minakjjMkjj� þ

bk

2
jjXtþ1

k½ � �Mkjj2F þ tr Qt
k

� �T
Xtþ1

k½ � �Mk

� �� �
: ð21Þ
And its closed-form solution is:
Mtþ1
k ¼ Dsk Xtþ1

k½ � þ Qt
k

bk

� �
¼ Udiag max kl � sk;0ð Þð ÞVT ð22Þ
where sk ¼ ak
bk
;Dsk X k½ �

� �
denotes the thresholding singular value decomposition (SVD) of X k½ � [20] and diag �ð Þ denotes a diag-

onal matrix. Specially, if the SVD of X k½ � ¼ UKVT , then its thresholding SVD is defined as:
Dsk X k½ �
� �

¼ UKskV
T ;
where Ksk ¼ diag max Kl�sk ;0
� �� �

.
Moreover, Z should satisfy the constraint conditions PX Yð Þ ¼ PX Zð Þ and Z ¼ X þN , so it can be updated by:
Ztþ1
i1 i2 ���iN ¼ X tþ1

i1 i2 ���iN þN tþ1
i1 i2 ���iN ; i1i2 � � � iN R X;

Yi1 i2 ���iN ; i1i2 � � � iN 2 X:

(
ð23Þ
Lastly, we update dual multipliers D and Qk by gradient descent:
Dtþ1 ¼ Dt þ q � Ztþ1 � X tþ1 �N tþ1
� �

; ð24Þ

Qtþ1
k ¼ Qt

k þ bk � Xtþ1
k½ � �Mtþ1

k

� �
: ð25Þ
The pseudocode of RTC-TT algorithm is given in Algorithm 1.
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Algorithm 1. Robust Tensor Completion based on Tensor-Train (RTC-TT)
1

2

Input: The observed data Y 2 Rd1�d2�����dn , index set X, original data O
https://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
http://trace.eas.asu.edu/yuv/.

106
Parameters: k;q; c;ak; bk where k ¼ 1;2; � � � ;N � 1

Initialization: X0 ¼ Z0, with Z0

X ¼ YX
whilenot converged

Update ak by Eq. (15);

fori ¼ 1 to MaxIterations

Update X by Eq. (19);

Update N by Eq. (20);

Update Mk by Eq. (22);

Update Z by Eq. (23);

Update D by Eq. (24);

Update Qk by Eq. (25);
ifjjX�Ojj2F
jjOjj2F

< �
break;

end if
if q < 1� 1010
q ¼ 1:1� q;

end if

end for

end while

Output: The recovered tensor X and N
5. Experiment

In this section, we use the popular color image datasets known as Lena, Peppers and Starfishwhich can be represented by a
third-order tensor (256� 256� 3), to verify the availability of our RTC-TT algorithm. Besides, one of the multispectral
unmixing datasets, MRI image1 (144� 192� 144), and video datasets, Suzie2 (176� 144� 150) and News1
(144� 144� 144) are also used. Meanwhile, several state-of-the-art recovery LRTC methods and RPCA algorithms are com-
pared under different missing percentages and salt-and-pepper noise [36,37] ratios:

� LRTC: SiLRTC [2] unfolded tensor as matrices along each mode and used the truncated SVD algorithm to complete the
estimating task of missing values. Further in this work, SiLRTC-TT [17] first used tensor-train rank to take place of Tucker
rank based on the SiLRTC. Similarly, TMac-TT [17] was also improved from TMac [30] by using TT rank.

� RPCA: TRPCA-SNN [28] focused on the sum of the nuclear norm to tackle RPCA problems in the unfolding matrices per-
spective. TRPCA-TNN [16] deduced the Tensor Nuclear Norm (TNN) from t-product and then proposed tensor singular value
thresholding (t-SVT), a generalization of thresholding SVD of matrices, to compute TNN approximatively. Considering the
comparability between RTC and TRPCA, we modified the constrained conditions of the latter one as PX Yð Þ ¼ PX X þNð Þto
obtain two new models, TRPCA-SNN2 and TRPCA-TNN2, respectively. Moreover, TRPCA-TNN2 was recently proposed in
[38], which is based on tubal rank.

5.1. Data processing

The salt-and-pepper noise of a certain ratio is used to produce the noisy image, i.e., a specific percentage of the image
entries will be randomly picked so as to set to be 0 or 1. And based on the dirty image, we execute the missing process
to obtain the observed image under a specific percentage. As for the value of missing entries, the mean of the values of
known entries is adopted in initializations. We set the value of missing entries to mean value instead of zeros to improve
the RPCA competitors meanwhile accelerate the recovery process.

All the experiments are simulated with respect to different missing ratios mr of various datasets, here mr is defined as
mr ¼ pQN
k¼1dk

;

where p is the total number of missing entries and dk denotes the dimension of k-th order of a tensor.



Fig. 1. Explanation of tree-KA.
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5.2. Tensor augmentation

It’s proved that TT rank can capture better global information on higher-order tensors. And it’s a special case of Tucker
rank at the level of third-order tensors. However, if we use TT rank of a third-order tensor, the local structure of its original
tensor is hardly exploited under TT decomposition. On the contrary, a low-rank TT can represent the augmented tensor once
the original tensor is slightly correlated [39]. Thus, higher-order tensors are needed to show the superiority of TT rank. As a
result, we use Tree-KA to extend the original data magnitude and introduce a more general tree structure explanation for KA.

Given a tensor T 2 Rn1�n2�n3 , what Tree-KA do is to cast it into another size of Y 2 RI1�I2�����In , where
Q3

j¼1nj ¼
Qn

i¼1Ii. Fig. 1
gives our explanation of Tree-KA. Corresponding to Fig. 1(a) and (b) shows the different divided granularities of source tensor
T 2 R16�16�24. The twelve gray parts make up the first generations of the left tree, i.e., I1 ¼ 12. Samely, the eight red parts
from the gray part 2 correspond to the second generations, i.e., I2 ¼ 8. And the rest can be done for the same reason. Even-
tually, the source tensor is transformed to a new tensor T 0 2 R12�8�8�8, for instance, the yellow unit can be searched as
2;2;1;2ð Þ.
5.3. Color image experiment

5.3.1. Random missing
We apply RTC-TT for image recovery in the numeric experiments, in which we set different missing ratios and different

degrees of noise to show the performances of various algorithms and adapt the k ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max n1;n2ð Þn3

p
suggested in [16].

First, we use Tree-KA to extend the image of T 2 R256�256�3 to T̂ 2 R4�4�4�4�4�4�4�4�3. According to the theory in [17], the
Tucker-based SiLRTC performs considerably worse when using Tree-KA because of their property of unbalance. So our model
RTC-TT, RTC-TT without Tree-KA, SiLRTC-TT, TMac-TT use the TT rank in experiments, while Tucker rank for the others,
because they are mainly based on third-order tensors. The TRPCA-TNN and TRPCA-SNN can hardly recover the low-rank
components when missing ratiomr P 0:6, they treat the missing entries as sparse component. As shown in Fig. 2, the results
of them are not pleasant when mr ¼ 0:6 and noise ratio nr ¼ 0:1. So we perform the simulation for the Lena, Peppers and
Starfish images where missing entries of the images are chosen according to a random distribution, the missing ratio mr var-
ies from 0:1 to 0:6 and nr from 0:05 to 0:3. For every experiment, we set the TRPCA-TNN with the best k ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max n1;n2ð Þn3

p
.

And we apply k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max n1;n2n3ð Þ

p
=3; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max n2;n1n3ð Þ

p
=3 and k3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max n3;n1n2ð Þ

p
=3 which make TRPCA-SNN perform

well in most cases. For the LRTC algorithms, we use the same index set X of observations.
In Fig. 2, performance of the algorithms on completing the Lena, Peppers, Starfish images is shown. Both low-rank com-

ponent X and sparse component N are well separated under the condition of the mr ¼ 0:4 and nr ¼ 0:1. However, the LRTC
algorithms can not wipe out the noise permanently once there exists any noise in X. That is because the elements in set X
will never change. Besides, the two modified model of TRPCA perform better than their raw ones, which also verify the effec-
tiveness of our improvement. Even though the SSIM values of RTC-TT and TRPCA-TNN2 are close, the details recovered by the
latter are inferior to RTC-TT, which can be obviously distinguished in the labeled boxes. What’s more, the separated sparse
components in the lower row can also reflect the denoising ability under this certain circumstance. The ones separated by
RTC-TT method hardly contain the content of the original image, on the contrary, the skeleton of the image is captured by
other methods, which is not a clean job exactly.

For color images, we adopt Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) as the evaluation
metric. Fig. 3 shows the variation trends of PSNR values of each algorithm. As we can see that in Fig. 3(a), RTC-TT method
holds superior PSNR values of different missing ratios. TRPCA-TNN2 and TRPCA-SNN2 are second and third to RTC-TT. At
a low missing level, TRPCA-TNN performs well. Because at that point, the missing values are regarded as noise by TRPCA-
TNN, and the lowmissing ratio corresponds to the sparsity, which satisfied the assumptions of RPCA problem properly. How-
ever, once the missing ratio rises, the assumption of sparsity is broken. In the meantime, a conflict between high missing
ratio and the functionality of ‘0-norm occurs, causing an unpleasant recovery result. LRTC methods invariably stay at a
low PSNR level due to their insolvability to outliers. TRPCA-TNN2 performs better than RTC-TT when nr > 0:15 as well as
mr ¼ 0:4 in Fig. 3(b), which shows their extraordinary solving ability to noisy images. The reason why TMac-TT does not
107



Fig. 2. Recover the Lena, Peppers, Starfish images with 40% of the missing entries and 10% of the corrupted entries using different algorithms. SS denotes
SSIM and PS denotes PSNR. (a) From top to bottom: Original image and Observed image; (b)–(j) From left to right: recovered images by RTC-TT, RTC-TT
without Tree-KA, SiLRTC-TT, TMac-TT, SiLRTC, TRPCA-SNN, TRPCA-TNN, TRPCA-SNN2 and TRPCA-TNN2. The low-rank component Xs are shown in upper
row by different algorithms. And the second-row images are the sparse component N s.

Fig. 3. The PSNR values of all algorithms on Lena image. (a) Under the condition of nr ¼ 0:1, the PSNR values vary by the growth of missing ratio; (b) Under
the condition of mr ¼ 0:4, the PSNR values vary by the growth of noise ratio.
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get a pleasant result is that its core is matrix factorization which is also extremely sensitive to outliers. We also note that
whenmr < 0:3 and nr ¼ 0:1, the TRPCA-TNN and TRPCA-SNN hold a better performance in most cases. At this time, the miss-
ing entries are regarded as sparse noise. So we choose the missing percentage of 40% to compare the performance of all algo-
rithms under different noisy ratios in Fig. 3(b).

The effects of Tree-KA are shown in Fig. 2 compared with RTC-TT without Tree-KA. It can be seen easily that the
performance of the method without Tree-KA is inferior to the one using Tree-KA. That is because Tree-KA is able to capture
the latent structure information of TT rank in low-order tensors. According to the format of the TT rank, the size of the
matrix flattened along the third mode is (196608� 1), which hardly owns structure. And what Tree-KA does is to break
Fig. 4. The average PSNR values of two setting approaches of weight on the three color images. (a) The PSNR values vary by the growth of missing ratio at
nr ¼ 0:1; (b) The PSNR values vary by the growth of noise ratio at mr ¼ 0:4.

Fig. 5. Recover the Lena, Peppers images with structural missing entries and 10% of the noisy entries using different algorithms. SS denotes SSIM and PS
denotes PSNR. (a) From top to bottom: Original image and Observed image; (b)–(i) From left to right: recovered images by RTC-TT, SiLRTC-TT, TMac-TT,
SiLRTC, TRPCA-SNN, TRPCA-TNN, TRPCA-SNN2 and TRPCA-TNN2. The low-rank component Xs are shown in upper row by different algorithms. And the
second-row images are the sparse component N s.
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the dimensional limitation of TT rank. Additionally, we compared our auto-weighted method against the average weight
based on the three color images in various circumstances. Both Fig. 4(a) and (b) show the superiority of the auto-
weighted method, which verifies the effectiveness of the auto-weighted mechanism.
5.3.2. Structural missing
Fig. 5 shows the recovered performance on color images for the structural missing entries. In this case, the proposed

method produces a much better visual effect against the others. No matter the global noise or local features, RTC-TT performs
the most similar result to the original image. By taking the mean value as the missing entries in RPCA methods for a rela-
tively fair comparison, both TRPCA-SNN and TRPCA-TNN can hardly erase the text from observations. However, their mod-
ified versions, i.e., TRPCA-SNN2 and TRPCA-TNN2, are robust to RTC problems and obtain better results.
5.4. MRI image experiment

In multispectral image recovery, we also benchmark the algorithms introduced above on MRI image. We do the same ini-
tializations on the original image as color images do, and the same setting approachs of k and other parameters of each algo-
rithms. The only difference is that the parameters in TRPCA-SNN are set to be k1 k2 k3½ � ¼ 30 35 30½ �, which can hold a
better performance.

Using Tree-KA to make best use of the potential of TT rank, we extend the low-order multispectral image of
P 2 R144�192�144 to a higher-order one of P̂ 2 R4�4�4�4�4�4�4�3�3�3�3�3, despite of low-diamention structure. And this high-
order tensor is directly used for the robust tensor completion experiments. PSNR is again used to evaluate the quality of
recovery.

In Fig. 6, the recovered results of MRI image are given. The proposed method holds a relatively close PSNR value with
TRPCA-TNN2 under mr ¼ 0:5 and nr ¼ 0:1. What’s more, it’s difficult to recognize the superior one by ocular estimate,
too. However, the results of each band of MRI image are shown by PSNR values in Fig. 7(a). It can be seen that the proposed
Fig. 6. Recovered results of MRI image with 50% of the missing entries and 10% of the corrupted entries using different algorithms. PS denotes PSNR. (a)
From top to bottom: Original image and Observed image; (b)–(i) From left to right: recovered images by RTC-TT, SiLRTC-TT, TMac-TT, SiLRTC, TRPCA-SNN,
TRPCA-TNN, TRPCA-SNN2 and TRPCA-TNN2. The low-rank component Xs are shown in upper row by different algorithms. And the second-row images are
the sparse component N s.

Fig. 7. Under the condition of nr ¼ 0:1 and mr ¼ 0:5, the PSNR values of all algorithms.
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method performs better than TRPCA-TNN2 at both ends where the neighbor bands are lacking. It implies that TRPCA-TNN2
needs more reference information than RTC-TT.
5.5. Video experiment

We also apply our RTC-TT algorithms to video datasets. Similarly, using Tree-KA to reshape the original video Suzie of
T 2 R176�144�150 to a higher-order one of T̂ 2 R4�4�5�4�4�5�11�9�6 and News of Y 2 R144�144�144 to
Ŷ 2 R4�4�4�4�4�4�3�3�3�3�3�3. Rather than performing the algorithms on each frame, we perform our benchmarks on the
entire videos.
Fig. 8. The 5th;25th;45th;65th;85th;105th;125th and 145th frames in Suzie video recovery of all algorithms with mr ¼ 0:5 and nr ¼ 0:1. (a) Original
video; (b) Observed video; (c) RTC-TT; (d) SiLRTC-TT; (e) TMac-TT; (f) SiLRTC; (g) TRPCA-SNN; (h) TRPCA-TNN; (i) TRPCA-SNN2; (j) TRPCA-TNN2.
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Fig. 9. The 5th;25th;45th;65th;85th;105th;125th and 144th frames in News video recovery of all algorithms with mr ¼ 0:5 and nr ¼ 0:1. (a) Original
video; (b) Observed video; (c) RTC-TT; (d) SiLRTC-TT; (e) TMac-TT; (f) SiLRTC; (g) TRPCA-SNN; (h) TRPCA-TNN; (i) TRPCA-SNN2; (j) TRPCA-TNN2.
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Figs. 8 and 9 show several frames uniformly selected from recovery videos. For TRPCA-SNN, k1 k2 k3½ � ¼ 30 30 30½ � is
empirically set to improve it’s performance. For the others, we continue using the same setting approaches of parameters. It
can be seen that basic TRPCA algorithms are both almost incomprehensible and LRTC algorithms can not denoise the video
effectively under the case of mr ¼ 0:5; nr ¼ 0:1. While our RTC-TT method and TRPCA-TNN2 outperform all algorithms for a
clean and elegant job. Actually as shown in Fig. 7(b) and (c), each of the two have its own advantages. RTC-TT can hold a
better performance in the place of great fluctuation or both ends of the videos. By way of contrast, TRPCA-TNN2 is more suit-
ble for the mild changing datasets. Recently, [38] claimed that compared with the traditional multilinear algebraic setup, the
t-SVD algebraic framework is more suitable for natural image processing, which is corresponding to our results. Even though,
our model works better than all the rest, except TRPCA-TNN2. Between frame 40th and 60th in video Suzie, the proposed
method shows its superiority to TRPCA-TNN2 when the video varies tempestuously. That is the part that Suize flipped her
hair when calling, in contrast to the other frames that she nearly stand still all the time. In a way, our method does not rely
as much on the information of the front or back frames as the other one, which implies that RTC-TT will perform well in a
low-frame video. And as shown in color image experiments, the three-channel images explained what the low-frame video
is exactly like. What happened in video News similarly is that the part of the 91st frame the girl in the background is ampli-
fied suddenly, which also implies RTC-TT’s relative independence to neighbors.
Fig. 10. The PSNR values of our methods with different b settings on color image Lena and Peppers. The legend ‘mr04_nr005’ means the result is obtained at
mr = 0.4, nr = 0.05, and the same to the rest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. The convergence behavior of the proposed algorithm on RE and PSNR values at mr = 0.5, nr = 0.05.
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5.6. Parameters analysis

In the experiments, all the elements of vector b share the same value, i.e., b1 ¼ b2 ¼ � � � ¼ bN�1. The tradeoff between
parameter bk k ¼ 1;2; � � �ð Þ and q in Eq. (19) determine the final recovering result of the proposed model. To gain better per-
formance, bk and q are expected to match the missing ratio and noise ratio in different scenarios, respectively. In other
words, bk deserves a larger value at a high missing ratio circumstance. Thus, we consider that the value of bk should be
the multiple of missing ratio. Based on that, we construct a small parameter experiment on two color images Lena and Pep-
pers to select the most appropriate bk. Fig. 10 shows that the proposed model can perform well in most situations when
bk ¼ mr � 10�3. Besides, the value of q is assigned as q ¼ bk � nr

mr.

5.7. Convergency analysis

The iterations of our algorithm will be stopped when the relative change of the variables, i.e., jjXk�Xk�1 jjF
jjT jjF

, is smaller than

10�5. Fig. 11(a) and (b) show the variation tendency of Relative Error (RE) values, i.e., RE ¼ jjX�T jjF
jjT jjF

, and PSNR values on three

color images, Lena, Peppers, and Starfish, respectively. The overall downward trend of all the curves in Fig. 11 illustrates that
the proposed algorithm converges to an optimal point.
6. Conclusion and future works

In this paper, to decompose a given tensor with partial observations Into a low-rank component and a sparse component,
we have proposed a mixture model for LRTC and RPCA. Due to the unbalanced property of Tucker rank, we use TT rank to
capture more global information. Moreover, an auto-weighted mechanism is appended into the compositive model to max-
imize the structure potential of TT rank instead of average weight. The superiority of the auto-weighted mechanism is ver-
ified in numerical experiments. Compared with TRPCA-TNN2, the proposed method performs better under the low noise
level circumstance. Based on several datasets, experimental results also show the effectiveness of our algorithm.

In future work, it would be of great interest to leverage the prior information of the image data to remove the block-
artifacts shown in recovered color images.
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